Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Dig Dis ; 25(2): 78-90, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450936

RESUMO

Inflammatory bowel disease (IBD), mainly comprising ulcerative colitis and Crohn's disease, is a group of gradually progressive diseases bringing significant mental anguish and imposes serious economic burdens. Interplay of genetic, environmental, and immunological factors have been implicated in its pathogenesis. Nutrients, as crucial environmental determinants, mainly encompassing carbohydrates, fats, proteins, and micronutrients, are closely related to the pathogenesis and development of IBD. Nutrition is essential for maintaining the dynamic balance of intestinal eco-environments to ensure intestinal barrier and immune homeostasis, while this balance can be disrupted easily by maladjusted nutrition. Research has firmly established that nutrition has the potential to shape the composition and function of gut microbiota to affect the disease course. Unhealthy diet and eating disorders lead to gut microbiota dysbiosis and further destroy the function of intestinal barrier such as the disruption of membrane integrity and increased permeability, thereby triggering intestinal inflammation. Notably, appropriate nutritional interventions, such as the Mediterranean diet, can positively modulate intestinal microecology, which may provide a promising strategy for future IBD prevention. In this review, we provide insights into the interplay between nutrition and gut microbiota and its effects on IBD and present some previously overlooked lines of evidence regarding the role of derived metabolites in IBD processes, such as trimethylamine N-oxide and imidazole propionate. Furthermore, we provide some insights into reducing the risk of onset and exacerbation of IBD by modifying nutrition and discuss several outstanding challenges and opportunities for future study.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Intestinos/patologia , Doença de Crohn/complicações , Dieta/efeitos adversos , Disbiose/complicações
2.
J Am Chem Soc ; 146(8): 5643-5649, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38327018

RESUMO

We developed a method for the enantioselective synthesis of germanium-stereogenic compounds by the desymmetric carbene insertion of dihydrogermanes. A chiral rhodium phosphate catalyst decomposes diaryldiazo-methanes to generate rhodium carbenes that insert enantioselectively into one of the two Ge-H bonds of dihydrogermanes to form germanium-stereogenic compounds under mild reaction conditions. By this method, a variety of chiral germanes with germanium-stereogenic centers were synthesized in high yields and excellent enantioselectivities. Kinetic studies of the reaction showed that the diazo decomposition process was the rate-determining step. The remaining Ge-H bond of the chiral germane products provides a possibility for preparing chiral tetra-substituted germanium-stereogenic compounds.

3.
J Am Chem Soc ; 146(5): 3458-3470, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270100

RESUMO

Ligand modulation of transition-metal catalysts to achieve optimal reactivity and selectivity in alkene hydrofunctionalization is a fundamental challenge in synthetic organic chemistry. Hydroaminoalkylation, an atom-economical approach for alkylating amines using alkenes, is particularly significant for amine synthesis in the pharmaceutical, agrochemical, and fine chemical industries. However, the existing methods usually require specific substrate combinations to achieve precise regio- and stereoselectivity, which limits their practical utility. Protocols allowing for regiodivergent hydroaminoalkylation from the same starting materials, controlling both regiochemical and stereochemical outcomes, are currently absent. Herein, we report a ligand-controlled, regiodivergent nickel-catalyzed hydroaminoalkylation of unactivated alkenes with N-sulfonyl amines. The reaction initiates with amine dehydrogenation and involves aza-nickelacycle intermediates. Tritert-butylphosphine promotes branched regioselectivity and syn diastereoselectivity, whereas ethyldiphenylphosphine enables linear selectivity, yielding regioisomers with inverse orientation. Systematic evaluation of diverse monodentate phosphine ligands reveals distinct regioselectivity cliffs, and % Vbur (min), a ligand steric descriptor, was established as a predictive parameter correlating ligand structure to regioselectivity. Computational investigations supported experimental findings, offering mechanistic insights into the origins of regioselectivity. Our method provides an efficient and predictable route for amine synthesis, demonstrating broad substrate scope, excellent tolerance toward various functional groups, and practical advantages. These include the use of readily available starting materials and cost-effective nickel(II) salts as precatalysts.

4.
Histol Histopathol ; 39(1): 117-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37129345

RESUMO

Keratin 80 (KRT80) is a filament protein that participates in cell differentiation and the integrity of the epithelial barrier. Here, KRT80 expression was higher in gastric cancer compared with normal mucosa at both mRNA and protein levels by bioinformatic analysis, qRT-PCR and Western blot (p<0.05), however, the methylation of KRT80 was lower than in normal mucosa (p<0.05). There was a negative relationship between promoter methylation and expression level of KRT80 gene in gastric cancer (p<0.05). KRT80 mRNA and protein expression was positively correlated with the differentiation of gastric cancer (p<0.05), while KRT80 methylation was negatively associated with gastric cancer differentiation and p53 mutation (p<0.05). The expression of KRT80 mRNA was positively linked to the short survival time of gastric cancers (p<0.05). The differential genes of KRT80 mRNA were involved in ligand-receptor interaction, estrogen signal pathway, peptidase, filament and cytoskeleton, keratinocyte differentiation, vitamin D receptor, muscle contraction, and B cell-mediated immunity (p<0.05). KRT80-related genes were classified into cell adhesion and junction, cadherin binding, skin and epidermis development, and so forth (p<0.05). KRT80 knockdown suppressed proliferation, anti-apoptosis, anti-pyroptosis, migration, invasion and epithelial-mesenchymal transition in gastric cancer cells (p<0.05). These findings indicated that up-regulated expression of KRT80 played a crucial part in gastric carcinogenesis, and might be considered as a biological marker for aggressive behaviors and poor prognosis. Its silencing might be used as an approach of target therapy for gastric cancer patients.


Assuntos
Neoplasias Gástricas , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Prognóstico , RNA Mensageiro/metabolismo , Neoplasias Gástricas/metabolismo
5.
Clin. transl. oncol. (Print) ; 25(10): 3042-3056, oct. 2023. ilus, tab, graf
Artigo em Inglês | IBECS | ID: ibc-225084

RESUMO

Background Belonging to the G-protein coupled receptor 1 family, G protein-coupled receptor 176 (GPR176) is associated with the Gz/Gx G-protein subclass and is capable of decreasing cAMP production. Methods GPR176 expression was detected by qRT-PCR, bioinformatics analysis, Western blot and immunohistochemistry, and compared with clinicopathological characteristics of breast cancer. GPR176-related genes and pathways were subjected to bioinformatic analysis. We also explored the effects of GPR176 on the phenotypes of breast cancer cells. Results Lower expression of GPR176 mRNA was seen in breast cancer than in normal tissues, but the opposite pattern was found for its protein (p < 0.05). GPR176 mRNA was associated with female sex, low T staging, non-Her-2+ subtypes, non-mutant p53 status in breast cancer (p < 0.05). GPR176 methylation was negatively correlated with its mRNA level and T staging in breast cancer, and was higher in breast cancer than normal tissues (p < 0.05). GPR176 protein expression was positively correlated with older age, small tumor size, and non-luminal-B subtype of breast cancers (p < 0.05). The differential genes of GPR176 were involved in receptor-ligand interaction, RNA maturation, and so forth (p < 0.05). GPR176-related genes were categorized into cell mobility, membrane structure, and so on (p < 0.05). GPR176 knockdown weakened the proliferation, glucose catabolism, anti-apoptosis, anti-pyroptosis, migration, invasion, and epithelial-mesenchymal transition of breast cancer cells. Conclusion These results indicate that GPR176 might be involved in the tumorigenesis and subsequent progression of breast cancer by deteriorating aggressive phenotypes. It might be utilized as a potential biomarker to indicate the aggressive behaviors and poor prognosis of breast cancer and a potential target of genetic therapy (AU)


Assuntos
Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Terapia Genética , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Prognóstico , Fenótipo
6.
J Am Chem Soc ; 145(35): 19195-19201, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37616490

RESUMO

We present the first enantioselective nickel-catalyzed borylative coupling of 1,3-dienes with aldehydes, providing an efficient route to highly valuable homoallylic alcohols in a single step. The reaction involves the 1,4-carboboration of dienes, leading to the formation of C-C and C-B bonds accompanied by the construction of two continuous stereogenic centers. Enabled by a chiral spiro phosphine-oxazoline nickel complex, this transformation yields products with exceptional diastereoselectivity, E-selectivity, and enantioselectivity. The diastereoselectivity of the reaction can be controlled by employing either (Z)-1,3-dienes or (E)-1,3-dienes.

7.
Chem Sci ; 14(32): 8644-8650, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37592986

RESUMO

Molecules with an allylic amine motif provide access to important building blocks and versatile applications of biologically relevant chemical space. The need for diverse allylic amines requires the development of increasingly general and modular multicomponent reactions for allylic amine synthesis. Herein, we report an efficient catalytic multicomponent coupling reaction of simple alkenes, aldehydes, and amides by combining nickel catalysis and Lewis acid catalysis, thus providing a practical, environmentally friendly, and modular protocol to build architecturally complex and functionally diverse allylic amines in a single step. The method is remarkably simple, shows broad functional-group tolerance, and facilitates the synthesis of drug-like allylic amines that are not readily accessible by other methods. The utilization of accessible starting materials and inexpensive Ni(ii) salt as the alternative precatalyst offers a significant practical advantage. In addition, the practicality of the process was also demonstrated in an efficient, gram-scale preparation of the prostaglandin agonist.

8.
Nat Commun ; 14(1): 3326, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286579

RESUMO

Control of the regioselectivity of α-alkylation of carbonyl compounds is a longstanding topic of research in organic chemistry. By using stoichiometric bulky strong bases and carefully adjusting the reaction conditions, selective alkylation of unsymmetrical ketones at less-hindered α-sites has been achieved. In contrast, selective alkylation of such ketones at more-hindered α-sites remains a persistent challenge. Here we report a nickel-catalysed alkylation of unsymmetrical ketones at the more-hindered α-sites with allylic alcohols. Our results indicate that the space-constrained nickel catalyst bearing a bulky biphenyl diphosphine ligand enables the preferential alkylation of the more-substituted enolate over the less-substituted enolate and reverses the conventional regioselectivity of ketone α-alkylation. The reactions proceed under neutral conditions in the absence of additives, and water is the only byproduct. The method has a broad substrate scope and permits late-stage modification of ketone-containing natural products and bioactive compounds.

9.
Org Lett ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294050

RESUMO

Highly substituted aminotetrahydropyrans were synthesized via sequential C-H functionalizations. The process was initiated with a Pd(II)-catalyzed stereoselective γ-methylene C-H arylation of aminotetrahydropyran, followed by α-alkylation or arylation of the corresponding primary amine. The initial γ-C-H (hetero)arylation was compatible with a range of aryl iodides containing various substituents and provided the corresponding products in moderate to good yields. The subsequent α-alkylation or arylation of the isolated arylated products proceeded with high diastereoselectivity to afford value-added disubstituted aminotetrahydropyrans.

10.
Clin Transl Oncol ; 25(10): 3042-3056, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37079213

RESUMO

BACKGROUND: Belonging to the G-protein coupled receptor 1 family, G protein-coupled receptor 176 (GPR176) is associated with the Gz/Gx G-protein subclass and is capable of decreasing cAMP production. METHODS: GPR176 expression was detected by qRT-PCR, bioinformatics analysis, Western blot and immunohistochemistry, and compared with clinicopathological characteristics of breast cancer. GPR176-related genes and pathways were subjected to bioinformatic analysis. We also explored the effects of GPR176 on the phenotypes of breast cancer cells. RESULTS: Lower expression of GPR176 mRNA was seen in breast cancer than in normal tissues, but the opposite pattern was found for its protein (p < 0.05). GPR176 mRNA was associated with female sex, low T staging, non-Her-2+ subtypes, non-mutant p53 status in breast cancer (p < 0.05). GPR176 methylation was negatively correlated with its mRNA level and T staging in breast cancer, and was higher in breast cancer than normal tissues (p < 0.05). GPR176 protein expression was positively correlated with older age, small tumor size, and non-luminal-B subtype of breast cancers (p < 0.05). The differential genes of GPR176 were involved in receptor-ligand interaction, RNA maturation, and so forth (p < 0.05). GPR176-related genes were categorized into cell mobility, membrane structure, and so on (p < 0.05). GPR176 knockdown weakened the proliferation, glucose catabolism, anti-apoptosis, anti-pyroptosis, migration, invasion, and epithelial-mesenchymal transition of breast cancer cells. CONCLUSION: These results indicate that GPR176 might be involved in the tumorigenesis and subsequent progression of breast cancer by deteriorating aggressive phenotypes. It might be utilized as a potential biomarker to indicate the aggressive behaviors and poor prognosis of breast cancer and a potential target of genetic therapy.


Assuntos
Terapia Genética , Neoplasias , Feminino , Animais , Biomarcadores , Movimento Celular/genética , Fenótipo , RNA Mensageiro/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Linhagem Celular Tumoral , Prognóstico , Neoplasias/genética
11.
Angew Chem Int Ed Engl ; 62(24): e202304427, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37057709

RESUMO

Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp3 )-H functionalization by hydrogen-atom transfer has emerged as a straightforward, powerful tool for the synthesis of chiral amines, but methods for intermolecular enantioselective C(sp3 )-H amination remain elusive. Herein, we report a cationic copper catalytic system for intermolecular enantioselective benzylic C(sp3 )-H amination with peroxide as an oxidant. This mild, straightforward method can be used to transform an array of feedstock alkylarenes and amides into chiral amines with high enantioselectivities, and it has good functional group tolerance and broad substrate scope. More importantly, it can be used to synthesize bioactive molecules, including chiral drugs. Preliminary mechanistic studies indicate that the amination reaction involves benzylic radicals generated by hydrogen-atom transfer.

12.
J Obstet Gynaecol ; 42(7): 3149-3157, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35929918

RESUMO

Although ovarian cancer usually responds well to platinum- and taxane-based first-line chemotherapy, most patients develop recurrence and chemoresistance. Regenerating gene 4 (REG4) is a secretory protein involved in cell differentiation and proliferation. We found higher REG4 expression in ovarian cancer than in normal tissues (p < .05). Regenerating gene 4 expression was negatively associated with overall, progression-free or post-progression survival rates of patients with ovarian cancer receiving platinum or paclitaxel treatment (p < .05) according to a Kaplan-Meier plotter. Regenerating gene 4 overexpression resulted in either cisplatin or paclitaxel resistance, and apoptosis resistance in CAOV3 ovarian cancer cells (p < .05). REG4-transfected ovarian cancer cells showed stronger migration and invasion treated with cisplatin or paclitaxel (p < .05). Additionally, cisplatin or paclitaxel exposure led to the overexpression of phosphorylated phosphoinositide 3-kinase (p-PI3K), p-Akt, phosphorylated mammalian target of rapamycin (p-mTOR), glutathione S-transferase-π, survivin, and B-cell lymphoma 2 in REG4 transfectants compared with control cells (p < .05). These findings suggested that REG4 expression was up-regulated in ovarian cancer, and associated with poor survival and chemotherapy resistance. REG4 promoted the occurrence, development, and chemotherapy resistance of ovarian cancer by regulating cell proliferation, apoptosis, migration, and invasion, and PI3K/Akt/m-TOR signalling pathways. IMPACT STATEMENTWhat is already known on this subject? REG4 mRNA expression is up-regulated in many digestive cancers. High REG4 expression was associated with an adverse prognosis, high tumour and nodal stages, poor differentiation, and hepatic and peritoneal metastases of digestive cancers. REG4 expression conferred cancer cells with increased resistance to chemoradiotherapy, especially 5-FU-based treatment, by activating the MAPK/Erk/Bim signalling pathway.What do the results of this study add? REG4 was highly expressed in ovarian cancer. The expression of p-PI3K, p-AKT, p-mTOR, GST-π, survivin, and Bcl-2 was increased in REG4-overexpressing cells. High REG4 expression was significantly associated with inferior OS, PFS, and PPS rates in patients with ovarian cancer receiving platinum chemotherapy. REG4 mediated cisplatin and paclitaxel resistance in CAOV3 ovarian cancer cells. The percentage of apoptotic cells was markedly lower in REG4-transfected compared to mock-transfected cells after cisplatin or paclitaxel treatment.What are the implications of these findings for clinical practice and/or further research? This study aimed to evaluate the prognostic significance of REG4 expression in ovarian cancer treated with platinum and paclitaxel, to explore REG4 chemoresistance mechanisms to platinum and paclitaxel, and to provide a scientific experimental basis for the clinical treatment and outcome evaluation of ovarian cancer. In order to provide comprehensive clinical treatment of ovarian cancer, it is helpful to improve our understanding of multi-drug resistance and identify new cancer diagnostic biomarkers.


Assuntos
Cisplatino , Neoplasias Ovarianas , Proteínas Associadas a Pancreatite , Feminino , Humanos , Apoptose , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Paclitaxel , Proteínas Associadas a Pancreatite/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Platina/farmacologia , Platina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Survivina/metabolismo , Serina-Treonina Quinases TOR/metabolismo
13.
Angew Chem Int Ed Engl ; 61(18): e202117233, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35112447

RESUMO

We report the first example of selective PdII -catalyzed tertiary C-H activation of cyclobutylmethyl ketones using a transient directing group. An electron-deficient 2-pyridone ligand was identified as the optimal external ligand to enable tertiary C-H activation. A variety of cyclobutylmethyl ketones bearing quaternary carbon centers was readily accessed without preinstalling internal directing groups in up to 81 % yield and >95 : 5 regioisomeric ratios of tertiary C-H arylation to ß-methylene (ß-methyl) or γ-C-H arylation.


Assuntos
Cetonas , Paládio , Carbono/química , Catálise , Cetonas/química , Ligantes , Paládio/química
14.
Angew Chem Int Ed Engl ; 61(11): e202115702, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35043525

RESUMO

We have developed a nickel-catalyzed desymmetric reductive cyclization/coupling of 1,6-dienes. The reaction provides an efficient method for constructing a chiral tertiary alcohol and a quaternary stereocenter by a single operation. The method has excellent diastereoselectivity and high enantioselectivity, a broad substrate scope, as well as good tolerance of functional groups. Preliminary mechanism studies show that alkyl nickel(I) species are involved in the reaction.

15.
Org Lett ; 23(20): 7900-7904, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34559538

RESUMO

A ligand-enabled nickel-catalyzed intramolecular hydroalkenylation of imines with unactivated alkenes has been developed. A variety of five- and six-membered cyclic allylic amines were synthesized in high yields. The use of both wide-bite-angle diphosphine ligand and Brønsted acid is crucial for realizing the reaction. Preliminary investigation of the asymmetric intramolecular hydroalkenylation of imines shows promising potential for the application of the method in the synthesis of enantio-enriched cyclic allylic amines.

16.
Angew Chem Int Ed Engl ; 60(6): 2948-2951, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33094547

RESUMO

A highly enantio- and regioselective hydrosulfonylation of 1,3-dienes with sulfonyl hydrazides has been realized by using a palladium catalyst containing a monodentate chiral spiro phosphoramidite ligand. The reaction provided an efficient approach to synthetically useful chiral allylic sulfones. Mechanistic studies suggest that the reaction proceeds through the formation of an allyl hydrazine intermediate and subsequent rearrangement to the chiral allylic sulfone product. The transformation of the allyl hydrazine intermediate to the product is the enantioselectivity-determining step.

18.
Huan Jing Ke Xue ; 41(2): 952-961, 2020 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608757

RESUMO

An analytical approach was developed to simultaneously determine 13 antibiotics in sulfonamides, quinolones, and macrolides in leafy vegetables by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS). After optimizing extracted solutions, purification methods, and eluents of antibiotics in vegetable substrates, and taking into account the influence of environmental changes and experimental conditions on the results, the optimal experimental scheme was determined. This involved ①weighing 500 mg of vegetable samples and adding 20 mL of methanol-Mcllvaine-Na2 EDTA solution; ② conducting ultrasonic and centrifugal extraction three times; ③ Allowing rotary evaporation to 20 mL to pass a HLB solid phase extraction column; ④ Eluting the extraction column using 6 mL of methanol, upon which the eluent was dried almost completely; ⑤ Re-dissolving the eluent with a mixed solution of acetonitrile:water (volume ratio of 2:8); ⑥ Detecting by UPLC-MS/MS after centrifugation and filtering. Phase A and B of UPLC-MS/MS used an aqueous solution of 1‰ formic acid and acetonitrile, respectively to conduct gradient elution. Results showed that when the pakchoi spiked at 300 ng·g-1, the spiked recoveries of 13 antibiotics were 38.05%-96.97%. At 150 ng·g-1, the spiked recoveries were 34.52%-111.10%. At 50 ng·g-1, the recoveries of standard addition were 41.75%-107.13%, and the relative deviation (RSD) values were all below 8.68%. The detection limit was 0.4-1 ng·g-1, and the limit of quantification was 1.5-3 ng·g-1. This demonstrated good extraction and recovery efficiency on different types of leafy vegetables, and presented a good analytical application effect. The antibiotic residues were detected in four kinds of leafy vegetables in found in markets. The total content ranged from 1.59 ng·g-1 to 32.01 ng·g-1, and the antibiotic content in samples was calculated by dry weight. The content of antibiotics in pakchoi was the highest, followed by Chinese cabbage, lettuce, and coriander. Among the antibiotics detected, sulfadimidine was the most abundant from the selected leafy vegetables. The content of antibiotics was very low, however the potential health risks caused by long-term consumption could not be ignored.


Assuntos
Antibacterianos/análise , Verduras/química , Cromatografia Líquida de Alta Pressão , Contaminação de Alimentos/análise , Extração em Fase Sólida , Espectrometria de Massas em Tandem
19.
Angew Chem Int Ed Engl ; 59(24): 9594-9600, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32155313

RESUMO

The use of chiral transient directing groups (TDGs) is a promising approach for developing PdII -catalyzed enantioselective C(sp3 )-H activation reactions. However, this strategy is challenging because the stereogenic center on the TDG is often far from the C-H bond, and both TDG covalently attached to the substrate and free TDG are capable of coordinating to PdII centers, which can result in a mixture of reactive complexes. We report a PdII -catalyzed enantioselective ß-C(sp3 )-H arylation reaction of aliphatic ketones using a chiral TDG. A chiral trisubstituted cyclobutane was efficiently synthesized from a mono-substituted cyclobutane through sequential C-H arylation reactions, thus demonstrating the utility of this method for accessing structurally complex products from simple starting materials. The use of an electron-deficient pyridone ligand is crucial for the observed enantioselectivity. Interestingly, employing different silver salts can reverse the enantioselectivity.


Assuntos
Ciclobutanos/química , Cetonas/química , Paládio/química , Benzeno/química , Catálise , Transporte de Elétrons , Estereoisomerismo
20.
J Am Chem Soc ; 141(7): 2889-2893, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30735367

RESUMO

A functional group exchange reaction between allylamines and alkenes via nickel-catalyzed C-C bond cleavage and formation was developed. This reaction provides a novel protocol, which does not require the use of unstable imine substrates, for the synthesis of allylamines, which are widely used in the production of fine chemicals, pharmaceuticals, and agrochemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...